Scene Representation Networks:
Continuous 3D-Structure-Aware Neural Scene Representations

Vincent Sitzmann Michael Zollhofer Gordon Wetzstein

5 ' N/ e
’ A‘G
LS N
%) N\

v, \/ ZORD JUNjS
<3 ﬁ“u« G FRE IP(/
Isle 2 %'f‘ aII Ol
3 R

/
< (] >
PA\‘ 7 /)A“

(P)

< &/ Universit
O y



single image
camera pose Novel Views Surface Normals
Intrinsics




Self-supervised Scene Representation Learning
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What can we learn about latent 3D scenes from observations?

Vision: Learn rich representations just by watching video!



Self-supervised Scene Representation Learning
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Self-supervised Scene Representation Learning
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Self-supervised Scene Representation Learning
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2D baseline: Autoencoder
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2D baseline: Autoencoder
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Doesn’t capture 3D properties of scenes.

Trained on ~2500 shapenet cars with 50 observations each.
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Need 3D inductive bias!
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3D inductive bias / Self-supervised
3D structure with posed images
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« Memory inefficient: 0(n3).
» Doesn’t parameterize scene surfaces smoothly.
« Generalization is hard.



Scene Representation Networks
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Scene Representation Networks
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Model scene as function @ that maps coordinates to features.
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Scene Representation Network parameterizes @ as MLP.
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Scene Representation Network parameterizes @ as MLP.

Can sample anywhere,
at arbitrary resolutions.

Parameterizes scene
surfaces smoothly.

Memory scales with scene
complexity.
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Scene Representation Networks
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Scene Representation Networks
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Neural Renderer.
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Neural Renderer.




Neural Renderer.




Neural Renderer Step 1: Intersection Testing.

ldea: march along ray until arrived at surface.




Neural Renderer Step 1: Intersection Testing.
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Neural Renderer Step 1: Intersection Testing.

Feasible step length:
Distance to closest scene
surface




Neural Renderer Step 1: Intersection Testin
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Neural Renderer Step 1: Intersection Testing.

lteration 1




Neural Renderer Step 1: Intersection Testing.
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Neural Renderer Step 1: Intersection Testin
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Neural Renderer Step 2: Color Generation

lteration 4




Neural Renderer Step 1: Intersection Testing.

lteration ...




Neural Renderer Step 1: Intersection Testing.




Neural Renderer Step 2: Color Generation
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Can now train end-to-end with posed images only!
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Generalizing across a class of scenes



Each scene represented by its own SRN.

5 =

Y/
\:1;
7
s
O
A

X

'i&%t g

YOG
O

p

X
N
A
a

7
XN
RO
\\ O

2 4

=
w
=)
©-
w
—
)
-+
)
&
T
@
o

P\
A'S

\

4
WA

N/
O

»

/

Va!

’”

\

\~/

\

AY
X/

N

V

A
\)

“

[~)

O
X\

()

N\

XS

\!

\

\
A
3
4
0
A\

[~

4

)

>

/)

Q=

%
\

Y

WV
Y

&5
(/

)

parameters ¢, € R!

5.

N/
X

>
O
g‘ 0

X
X
PN
a\

\\/A
»,’7.?‘.”,
ROZ
o

=
w
N
©-
w
—
)
-+
)
&
T
@
o

OO0

=

P

l‘\
AV

i‘v
fg‘éff
O

M
X
a

{
O
O

Y,
X
0
(/
/)‘

=2
w
g
©-
w
—
O
s}
)
&
©
@
OR



Each scene represented by its own SRN.
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Each scene represented by its own SRN.
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Represent each scene with
low-dimensional embedding
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Each scene represented by its own SRN.

embedding z, € R¥

embedding z; € R¥

embedding z, € R¥

OO0

embedding z,, € R¥

—

Hypernetwork

WO\

M)&. /(0)&‘%&&

FOPCR

>

parameters ¢, € R

parameters ¢, € R!

parameters ¢, € R

OO0

parameters ¢, € R




Results



Novel View Synthesis — Baseline Comparison

Shapenet v2 — single-shot reconstruction of objects in held-out test set

Training
= Shapenet cars / chairs.
= 50 observations per object.

Testing

« (Cars/ chairs from unseen
test set

» Single observation!

Input pose
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Novel View Synthesis — SRN Output

Shapenet v2 — single-shot reconstruction of objects in held-out test set

Input
pose




Sampling at arbitrary resolutions
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Generalization to unseen camera pPoses

Camera close-up Camera Roll

SRNSs




Generalization to unseen camera poses

Camera close-up Camera Roll

SRNSs

Doesn’t reconstruct
geometry

Doesn’t reconstruct
geometry

Tatarchenko et al.




Latent code interpolation

Surface Normals RGB



Latent code interpolation
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Can represent room-scale scenes, but aren’t compositional.

Training set novel-view synthesis on
GQN rooms (Eslami et al. 2018) with
Shapenet cars, 50 observations.

Work-in-progress: Compositional SRNs
generalize to unseen numbers of objects!
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Find me at Poster # 71!

Opcy0
- vsitzmann.github.io

Y @vincesitzmann

Looking for research positions
in scene representation
learning.

Interpolation Single-shot reconstruction Camera pose extrapolation



