Generative Neural Scene Representations for 3D-Aware Image Synthesis

Michael Niemeyer

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

January 13, 2021

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Covered Papers

GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis

Katja Schwarz and Yiyi Liao and Michael Niemeyer and Andreas Geiger NeurIPS 2020

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Michael Niemeyer, Andreas Geiger arXiv 2020

Collaborators

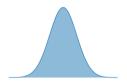
Katja Schwarz

Yiyi Liao

Andreas Geiger

Generative Models are great!

Sample a latent code from the prior distribution.



Latent Code

Pass latent code to trained generator G_{θ} .

Latent Code

Generator G_{θ}

The generator outputs a synthesized image.

Latent Code

Generator G_{θ}

Generated Image*

* The generated images are samples from StyleGAN2.

Sample more latent codes to get different generated images.

Generated Image*

* The generated images are samples from StyleGAN2.

Sample more latent codes to get different generated images.

Generated Image*

* The generated images are samples from StyleGAN2.

Is the ability to sample photorealistic images all we want?

For many applications, we require **control over the generation process**:

For many applications, we require control over the generation process:

Note: This and the following videos are only shown when opened with a supported PDF reader (e.g. Okular).

Animation Movies

For many applications, we require control over the generation process:

Video Games

For many applications, we require **control over the generation process**:

Virtual Reality

Goal: A generative model for 3D-aware image synthesis which allows us to:

► Generate photorealistic images

- ► Generate photorealistic images
- Control individual objects wrt. their pose, size, and position in 3D

- ► Generate photorealistic images
- ► Control individual objects wrt. their pose, size, and position in 3D
- Control camera viewpoint in 3D

- ► Generate photorealistic images
- ► Control individual objects wrt. their pose, size, and position in 3D
- Control camera viewpoint in 3D
- ► Train from collections of unposed images

What representation should we use for 3D-aware image synthesis?

3D Representations

Voxel-based 3D Latent Feature with Learnable Projection

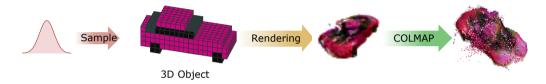
+ High image fidelity

- Object identity may vary with viewpoint due to learnable projection

HoloGAN [Nguyen-Phuoc et al., ICCV 2019]

3D Representations

Voxel-based 3D Shape with Volumetric Rendering

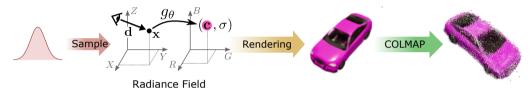


- ✤ Multi-view consistent
- Low image fidelity, high memory consumption

PlatonicGAN [Henzler et al., ICCV 2019]

3D Representations

Generative Radiance Fields



- + Continuous representation, multi-view consistent
- + High image fidelity, low memory consumption

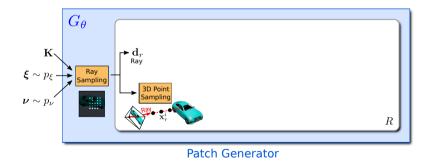
Sample camera matrix **K**, camera pose $\boldsymbol{\xi} \sim p_{\boldsymbol{\xi}}$, and patch sampling pattern $\boldsymbol{\nu} \sim p_{\boldsymbol{\nu}}$.

f K $m \xi \sim p_\xi$ $m
u \sim p_
u$

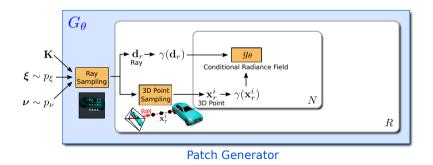
Pass **K**, $\boldsymbol{\xi}$, and $\boldsymbol{\nu}$ to generator G_{θ} and sample pixels / rays on image plane.

Schwarz, Liao, Niemeyer, Geiger: GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. NeurIPS, 2020

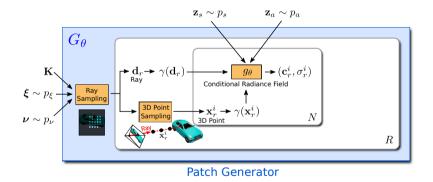
For each ray, get viewing direction \mathbf{d}_r and sample 3D points \mathbf{x}_r^i along ray.



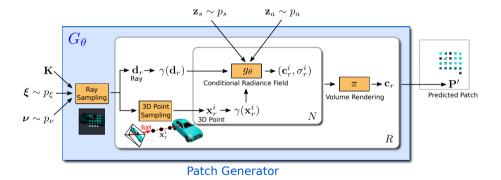
For each 3D point along ray, pass \mathbf{d}_r and \mathbf{x}_r^i through positional encoding γ and then to the conditional radiance field g_{θ} .



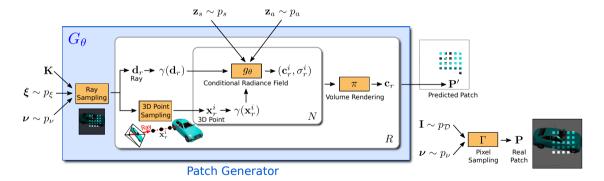
Sample latent shape and appearance codes $\mathbf{z}_s, \mathbf{z}_a$ and pass them to g_{θ} .



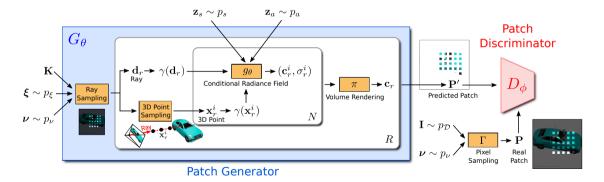
Perform volume-rendering for each ray and get predicted patch \mathbf{P}' .

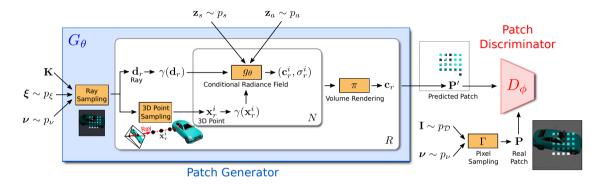


Sample patch **P** from real image **I** drawn from the data distribution $p_{\mathcal{D}}$.



Pass fake and real patch \mathbf{P}', \mathbf{P} to discriminator D_{ϕ} and train with adversarial loss.

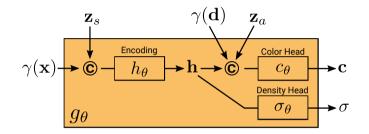




- ► Generator/discriminator for image patches of size 32 × 32 pixels
- ► Patches sampled at **random scale** using dilation

How do we parametrize Conditional Radiance Fields?

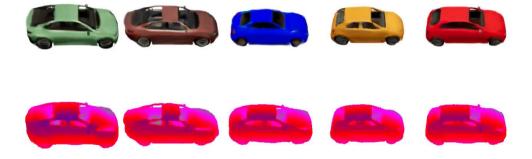
Conditional Radiance Fields



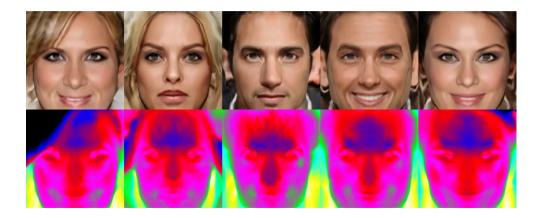
- Conditional radiance fields as fully-connected MLPs with ReLU activation
- Shape code \mathbf{z}_s concatenated with encoded 3D location $\gamma(\mathbf{x})$
- Appearance code \mathbf{z}_a concatenated with encoded viewing direction $\gamma(\mathbf{d})$

How well does it work?

Results on synthetic Carla dataset at 256^2 pixels:



Results on real CelebA-HQ dataset at 256^2 pixels:



Summary

► We propose GRAF, a novel method for 3D-aware image synthesis

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for high-resolution, multi-view consistent image generation

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for **high-resolution**, **multi-view consistent** image generation
- ► GRAF can be trained from **raw**, **unposed image collections**

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for **high-resolution**, **multi-view consistent** image generation
- ► GRAF can be trained from **raw**, **unposed image collections**
- ► Patch-based training necessary to avoid excessive memory consumption

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for high-resolution, multi-view consistent image generation
- ► GRAF can be trained from **raw**, **unposed image collections**
- ► Patch-based training necessary to avoid excessive memory consumption
- ► Radiance Fields are a promising representation also for generative tasks

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for high-resolution, multi-view consistent image generation
- ► GRAF can be trained from **raw**, **unposed image collections**
- ► Patch-based training necessary to avoid excessive memory consumption
- ► Radiance Fields are a promising representation also for **generative tasks**
- ► Limitation: Limited to single-object scenes

- ► We propose GRAF, a novel method for 3D-aware image synthesis
- ► GRAF allows for high-resolution, multi-view consistent image generation
- ► GRAF can be trained from **raw**, **unposed image collections**
- ► Patch-based training necessary to avoid excessive memory consumption
- ► Radiance Fields are a promising representation also for **generative tasks**
- ► Limitation: Limited to single-object scenes
- ► Limitation: Slow rendering time

How can we scale to more complex, multi-object scenes?

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

GIRAFFE:

► Incorporate a **compositional 3D scene representation** into the generative model

GIRAFFE: Compositional Generative Neural Feature Fields

GRAF:

► Incorporate a **3D representation** into the generative model

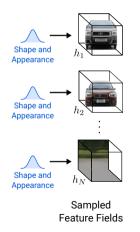
GIRAFFE:

- ► Incorporate a **compositional 3D scene representation** into the generative model
- ► Incorporate a **neural renderer** to yield fast and high-quality inference

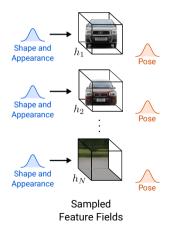
Sample N shape and appearance codes.

Niemeyer, Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. arXiv, 2020

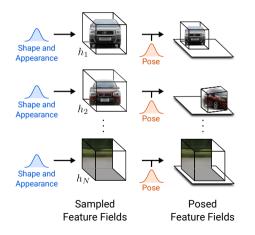
Get N feature fields. Note: We show features in RGB color for clarity.



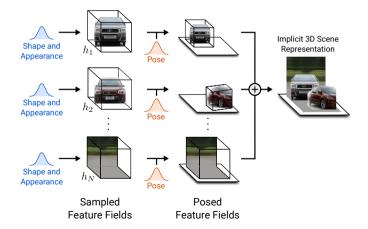
Sample size and pose for each feature field.



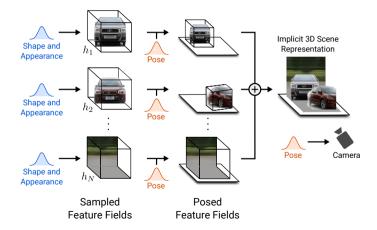
Get posed feature fields.



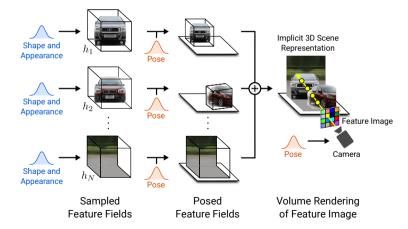
Composite all feature feature fields to one 3D scene representation.



Sample a camera pose.

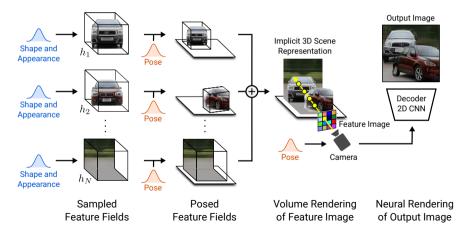


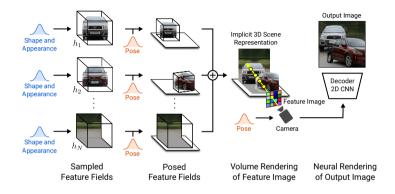
Perform volume rendering and get feature image.



Niemeyer, Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. arXiv, 2020

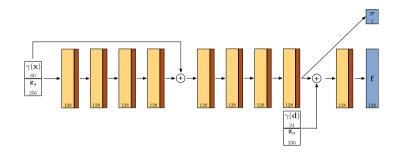
Pass feature image to neural renderer to obtain final output.





- ► We train with adversarial loss on full image
- We volume-render the feature image at 16×16 pixels

How do we parametrize Feature Fields?



- ► Feature fields as fully-connected MLPs with ReLU activation
- Shape code \mathbf{z}_s concatenated with encoded 3D location $\gamma(\mathbf{x})$
- Appearance code \mathbf{z}_a concatenated with encoded viewing direction $\gamma(\mathbf{d})$
- ► Replace RGB color head with **feature head**

How do we combine multiple Feature Fields?

Scene Composition

We have N feature fields

$$h_i(\mathbf{x}, \mathbf{d}) = (\sigma_i, \mathbf{f}_i)$$

which predict a density σ_i and a feature vector \mathbf{f}_i at (\mathbf{x}, \mathbf{d}) .

Final density at (\mathbf{x}, \mathbf{d}) :

$$\sigma = \sum_{i=1}^N \sigma_i$$

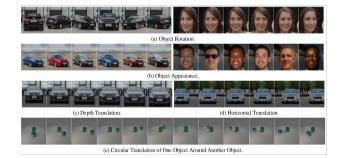
Final feature vector at (\mathbf{x}, \mathbf{d}) :

$$\mathbf{f} = \frac{1}{\sigma} \sum_{i=1}^{N} \sigma_i \mathbf{f}_i$$

How well does it work?

Controllable Single-Object Scene Generation at 256^2 pixels

Controllable Multiple-Object Scene Generation at 256^2 pixels



Out-of-Distribution Sampling

(a) Increase Depth Translation.

(b) Increase Horizontal Translation.

(c) Add Additional Objects (Trained on Two-Object Scenes).

(d) Add Additional Objects (Trained on Single-Object Scenes).

Total Rendering Time

	64×64	256×256
GRAF	110.1ms	1595.0ms
GIRAFFE	4.8ms	5.9ms

- CNN-based neural renderer yields faster inference.
- We always volume-render the feature image at 16×16 pixels.

Summary

▶ We propose GIRAFFE, a novel method for 3D controllable image synthesis

- ▶ We propose GIRAFFE, a novel method for 3D controllable image synthesis
- ► We incorporate **compositional 3D scene structure** into the generative model

- ▶ We propose GIRAFFE, a novel method for 3D controllable image synthesis
- ► We incorporate **compositional 3D scene structure** into the generative model
- ► GIRAFFE is trained from **raw**, **unposed image collections**

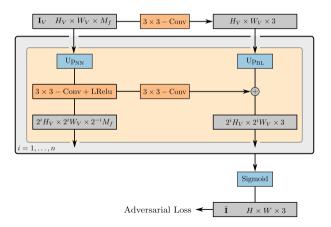
- ▶ We propose GIRAFFE, a novel method for 3D controllable image synthesis
- ► We incorporate **compositional 3D scene structure** into the generative model
- ► GIRAFFE is trained from **raw**, **unposed image collections**
- ► We have explicit control over individual objects during synthesis

- ▶ We propose GIRAFFE, a novel method for 3D controllable image synthesis
- ► We incorporate **compositional 3D scene structure** into the generative model
- ► GIRAFFE is trained from **raw**, **unposed image collections**
- ► We have explicit control over individual objects during synthesis
- ► Limitation: Multi-object scenes of low complexity

- ► We propose GIRAFFE, a novel method for 3D controllable image synthesis
- ► We incorporate **compositional 3D scene structure** into the generative model
- ► GIRAFFE is trained from **raw**, **unposed image collections**
- ► We have explicit control over individual objects during synthesis
- ► Limitation: Multi-object scenes of low complexity
- ► Limitation: We assume simple uniform priors over object and camera poses

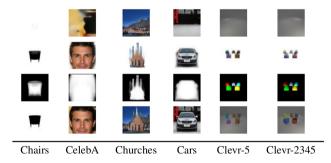
Thank you!

Neural Renderer Architecture



Niemeyer, Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. arXiv, 2020

Disentanglement Results



Niemeyer, Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. arXiv, 2020

Quantitative Results

	Chairs	Cats	CelebA	Cars	Churches
2D GAN [57]	59	18	15	16	19
Plat. GAN [31]	199	318	321	299	242
HoloGAN [62]	59	27	25	17	31
GRAF [76]	34	26	25	39	38
Ours	20	8	6	16	17

Table 1: Quantitative Comparison. We report the FID score (\downarrow) at 64^2 pixels for baselines and our method.

	CelebA-HQ	FFHQ	Cars	Churches	Clevr-2
HoloGAN [62]	61	192	34	58	241
w/o 3D Conv	33	70	49	66	273
GRAF [76]	49	59	95	87	106
Ours	21	32	26	30	31

Table 2: Quantitative Comparison. We report the FID score (\downarrow) at 256^2 pixels for the strongest 3D-aware baselines and our method.

Baseline Comparison

(a) 360° Object Rotation for HoloGAN [62].

(b) 360° Object Rotation for GRAF [76].

(c) 360° Object Rotation for Our Method.

Niemeyer, Geiger: GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields. arXiv, 2020